Curious Number Patterns #5: 9th Power Pattern, Münchhausen Numbers & 1729

numbers.jpg

To the Ninth Power

59 + 39 + 49 + 49 + 99 + 49 + 89 + 39 + 69 = 534494836

Münchhausen Numbers

Münchhausen number is a number equal to the sum of its nonzero digits raised to each digit’s power. There are only two of these numbers besides the trivial 0 and 1. See A046253.

3435 = 33 + 44 + 33 + 55
438579088 = 44 + 33 + 88 + 55 + 77 + 99 + 00 + 88 + 88

The Number 1729

According to the Indian mathematican Srinivasa Ramanujan, “[1729] is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways.” It can be expressed as:

1729 = 13 + 123 = 93 + 103

 In addition, if you add the number of the beast (666) to 1729, the total is equal to the sum of the first prime number (2) and the squares of the next nine consecutive primes.

1729 + 666 = 2 + 32 + 52 +72 + 92 + 112 + 132 + 172 + 192 + 232 + 29= 2395

 

Advertisements

Posted by

My name Edmark M. Law. I work as a freelance writer, mainly writing about science and mathematics. I am an ardent hobbyist. I like to read, solve puzzles, play chess, make origami and play basketball. In addition, I dabble in magic, particularly card magic and other sleight-of-hand type magic. I live in Hong Kong. You can find me on Twitter` and Facebook. My email is edmarklaw@learnfunfacts.com

11 thoughts on “Curious Number Patterns #5: 9th Power Pattern, Münchhausen Numbers & 1729

    1. I’m glad to hear that. Not many people praise this kind of thing. Some even say that it’s just a waste of time. To each his own I suppose.

      Anyway, I was the one who found the one with the ninth powers (using Python) and the 1729 + 666 one by accident. I don’t claim that I am the first one who found these properties as I suspect that these are already known before. 😀

      Liked by 3 people

    2. If I remember correctly, the story about 1729 is that Ramanunjan was visited by his mathematician friend Hardy who arrived in a cab. Hardy saw the number 1729 on it, and said, “Well nothing interesting there.” Ramanunjan instantly replied, on the spot, “No it’s the smallest number expressible as the sum of two cubes.” Hardy was dumbfounded that this formally uneducated man had had such a profound grasp of mathematics.

      Liked by 2 people

What's On Your Mind?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s